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Variational solution of the Dirac–Coulomb equation using
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radial integrals
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Abstract. An algorithm for the evaluation of two-electron integrals appearing in an
implementation of the Hylleraas-CI method for solving the Dirac–Coulomb eigenvalue problem
is presented. All integrals have been expressed analytically, though in some cases as infinite
series.

1. Introduction

A variational solution of the Dirac–Coulomb eigenvalue problem for a two-electron atom
using an explicitly correlated trial function was not attempted until very recently [1, 2].
Therefore the matrix elements and the elementary integrals which are relevant for solving
this problem are not available in the literature. In this paper integrals which arose when
solving the Dirac–Coulomb equation by means of either the Hylleraas-CI (Hy-CI) [3, 4]
or the superposition of correlated configurations (SCC) [5] method are evaluated using an
approach originally formulated by Sack [6]. Some of the integrals discussed in this paper
have also been evaluated, using another method, by Ko lakowska [2].

The method of Sack [6] is based on the following generalization of the well known
Laplace expansion ofr−1

12

f (r12) =
∞∑
l=0

fl(r>, r<)Pl(cosθ12) (1)

wheref (r12) is a function which can be represented as a finite or infinite sum of powers

of r12, not necessarily integer;r>
def= max{r1, r2}, r< def= min{r1, r2}, and

Pl(cosθ12) = 4π

2l + 1

l∑
m=−l

Y ∗l,m(1)Yl,m(2) (2)

is a Legendre polynomial. Due to Sack’s expansion (1) an arbitrary matrix element of
f (r12) between either scalar or spinor bras (〈B|) and kets (|K〉) may be expressed as

〈B|f (r12)ŏ|K〉 =
∞∑
l=0

〈RB(r1, r2)|fl(r>, r<)|RK(r1, r2)〉R〈9JB |Pl(cosθ12)ŏ|9JK 〉� (3)

whereŏ is an operator acting on the angular variables,RB /RK are the radial parts (assumed
to be scalar) and9JB /9JK are the angular and spinor parts of〈B|/|K〉. It is important to
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6244 G Pestka

note that, due to the triangle inequality, only a finite number of terms in equation (3) do
not vanish. Let us note that equation (3) is a generalization of the analogous Slater formula
of non-relativistic theory of atoms [7].

2. Reduction of two-electron matrix elements

Let B andK denote non-correlated configurations corresponding, respectively, to the bra
and ket wavefunctions. Each of them may be represented as a product of a radial function
RB/K(r1, r2) and an angular function

9J,M,j1,j2,π1,π2(1, 2)

=
∑
m1,m2

(−1)j1−j2+M√2J + 1

(
j1 j2 J

m1 m2 −M
)
ϕ
π1
j1,m1

(1)⊗ ϕπ2
j2,m2

(2) (4)

with πi = ±1 defined so thatji = li + πi
2 andϕπiji ,mi , i = 1, 2, are one-electron spin-angular

functions formed by the combination of the Pauli spinor with the spherical harmonics. The
angular functions are eigenfunctions of the angular momentum defined by a complete set
of the quantum numbersJ , M, j1, j2, π1 and π2. Let gB/K(r12) denote the following

correlation factorsrq12, (Tir
q

12) and (TiTj r
q

12), whereTi
def= σipi and q is an arbitrary real

number. LetT g denote the operator defined as

T g = (T g)+ gT
where(T g) is the result of action ofT on g. As one can seeTi is Hermitian. The matrices

(T1r12) = −iσ1r̂12 (T2r12) = −iσ2r̂21

wherer̂ij = rij
r12

and i is the imaginary unit, are unitary. Indeed,

(Tir12)
†(Tir12) = (σi r̂12)

2 = r̂2
12 = I

whereI is a 2×2 unit matrix. In general̂r stands hereafter forr/r, wherer is a vector and
r = |r|. Similarly, the matrix(T1f (r12)) = −i(σ1grad1f (r12)) is anti-Hermitian since it is
a product of iσ1 by a real scalar function. Obviously, also(T2f (r12)) is anti-Hermitian. All
two-electron matrix elements appearing in a two-electron Hy-CI Dirac–Coulomb problem
may be expressed in terms of:

CBK(ô) = 〈gB(r12)B|ô|gK(r12)K〉 (5)

where ô stands for one of the following operators: 1, 1/r12 andTi . We assume hereafter
that the basis functions are constructed in such a way that all matrix elementsCBK(ô) are
real.

The operators

Ti = −iσi∇i (6)

play a crucial role in the further considerations. Therefore it is useful to list their properties:

r
p

12(Tir
q

12) =


q

p + q
(
Tir

p+q
12

)
if p + q 6= 0

q(Ti ln r12) if p + q = 0
(7)

(T 2
i r

p

12) = −p(p + 1)rp−2
12 (8)

〈B|(Tif (r12))|K〉 = 〈TiB|f (r12)|K〉 − 〈B|f (r12)|TiK〉 (9)

(T1r
p

12)(T2r
q

12) =
pq

(p + q)(p + q − 2)
(T1T2r

(p+q)
12 )+ pq

p + q − 2
r
(p+q−2)
12 σ1σ2 (10)
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(Tir12) = i

r12
σi (rj − ri ) (11)

(Tjσirj ) = −iσiσj . (12)

Let us note that equation (10) is not applicable whenp + q = 0, 2, in that case one has to
use equations (11) and (12). In the spherical coordinates it may be expressed as

Ti = −i(σi r̂i )

(
∂

∂ri
− σiLi

ri

)
(13)

whereσiLi acts on the spherical variables only. The eigenfunctions ofσiLi are (4) and
the eigenvalues are equal toλi = πi(ji + 1

2)− 1. Therefore,Ti when it acts on eitherB or
K may be reduced to

Ti = −i(σi r̂i )

(
∂

∂ri
− λi
ri

)
(14)

acting on the radial part of the respective function (B or K). Using the properties ofTi and
equations (7)–(12) one may express matrix elementsCBK(ô) in terms of

DBK(f (r12)ŏ) = 〈B|f (r12)ŏ|K〉 (15)

wheref (r12) stands for eitherrs12 or lnr12 and ŏ denotes one of the following operators: 1,
(σ1σ2), (σi r̂j ), (σi r̂i ), or [(σ1r̂1)(σ2r̂2)].

3. Radial integrals

In the following sections three kinds of radial integrals corresponding to three different
forms of f (r12) in equation (3):
• f (r12) = rs12, wheres ∈ R,
• f (r12) = rk12, wherek = −1, 0, 1, 2, . . . ,
• f (r12) = ln(r12),

are considered. The form of the radial functionsRB(r1, r2) andRK(r1, r2) has been restricted
to

RA(r1, r2) = rγ
A
1

1 r
γ A2
2 exp(−αA1 r1− αA2 r2)

whereαAj > 0 for A = B,K andj = 1, 2. We define

R(r1, r2) ≡ RB(r1, r2)RK(r1, r2)r2
1r

2
2 ≡ rγ1

1 r
γ2

2 exp(−α1r1− α2r2) (16)

with γj = γ Bj + γ Kj + 2 andαj = αBj + αKj , j = 1, 2. The parameters in these radial
functions may be chosen to allow for their correct asymptotic behaviour both at the origin
and infinity. The correlation factors are usually chosen as polynomials inr12. However, the
Dirac–Coulomb cusp condition Kutzelnigg [8] requires real powers ofr12. Using integer
powers ofr12 is motivated by the simplicity of the resulting formalism. However, as it
is shown in the next section, the formalism in which the correlation factors contain real
powers ofr12 is only slightly more complicated than its counterpart with integer powers
only (using integer powers only implies that the logarithmic terms must be included).

The most complicated are the formulae for the integrals containing logarithmic terms.
Therefore, for this case both analytical and numerical algorithm have been presented. The
analytical method is the most efficient forα1 = α2. With increasing difference betweenα1

andα2 its convergence gradually deteriorates and, in some cases, the numerical approach
may be more efficient.
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3.1. Real powers ofr12

If (s ∈ R) then, according to Sack [6],

fl(r>, r<) ≡ fl,s =
(− 1

2s)l

( 1
2)l

rs>

(
r<

r>

)l
2F1

(
l − s

2
,−1

2
− s

2
; l + 3

2
; r

2
<

r2
>

)
. (17)

By expanding the hypergeometric function into a power series one obtains

fl,s =
∞∑
t=0

(2l + 1)Cslt r
l+2t
< rs−(l+2t)

> (18)

where

Cslt =
2l(− 1

2s)l

(2l + 1)!!

(l − 1
2s)t (− 1

2 − 1
2s)t

(l + 3
2)t t !

(19)

and(α)t is the Pochhammer’s symbol. If we define

2l
def= 4π

〈
9JB

∣∣∣∣( l∑
m=−l

Y ∗l,m(1)Yl,m(2)
)
ŏ

∣∣∣∣9JK 〉
�

(20)

and note that2l = 0 unlessl = lmin, lmin+2, lmin+4, . . . , lmax, then the angular integration
gives

〈9JB |rs12ŏ|9JK 〉� =
∞∑

q=lmin
(step2)

rq<r
s−q
>

min(q,lmax)∑
l=lmin
(step2)

Cslt2l (21)

wheret = q−l
2 . The radial integrals are given by

ϒq(s) ≡ 〈RB(r1, r2)|rq<rs−q> |RK(r1, r2)〉R
= V (α1, α2; γ1+ q, γ2+ s − q)+ V (α2, α1; γ2+ q, γ1+ s − q) (22)

where the standard notation [9, 10]:

V (α1, α2; γ1, γ2)
def=
∫ ∞

0
dr1

∫ ∞
r1

dr2 r
γ1

1 r
γ2

2 e−α1r1−α2r2 (23)

= 0(γ1+ γ2+ 2)

(γ1+ 1)(α1+ α2)γ1+γ2+2 2F1

(
1, γ1+ γ2+ 2; γ1+ 2; α1

α1+ α2

)
(24)

for the integrals corresponding toγ1 > 0∧ γ1+ γ2 > −1 has been introduced. Finally,

〈B|rs12ŏ|K〉 =
∞∑

q=lmin
(step2)

ϒq(s)

min(q,lmax)∑
l=lmin
(step2)

Cslt2l. (25)

As one can see by inspection of equations (24) and (25),〈B|rs12ŏ|K〉 is expressed as
a double series. Therefore a direct application of equation (25) is rather cumbersome. A
considerable simplification results from using recurrent relations for the integrals:

V (α1, α2; γ1, γ2) = 1

α2(γ1+ 1)

[
α1γ2V (α1, α2; γ1+ 1, γ2− 1)+ 0(γ1+ γ2+ 2)

(α1+ α2)γ1+γ2+1

]
γ1 > 0, γ1+ γ2 > −1.

(26)

As one can see, the radial integrals which appear in the series (25) asymptotically behave
as follows

V (α1, α2; γ1+ n, γ2− n) 6 C

δ + n −→n→∞ 0
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whereC andδ are real constants. Moreover, using the Gauss criterion, it is easy to check,
that the series (25) is convergent fors > −3.

3.2. Integer powers ofr12

In the case of integer powers ofr12, expansion (1) reduces to the Perkins formula [11]:

rk12 = 4π
Lk1∑
l=0

( l∑
m=−l

Y ∗lm(1)Ylm(2)
)( L

k,l
2∑

t=0

Cklt r
l+2t
< rk−(l+2t)

>

)
(27)

k = −1, 0, 1, 2, . . .

whereLk1 = k/2 andLk,l2 = k/2− l if k is even whileLk1 = ∞ andLk,l2 = (k + 1)/2 if k
is odd. The coefficientCklt are given as

Cklt = 1

k + 2

(
k + 2

2t + 1

)min[l−1,(k+1)/2]∏
α=0

2t − k + 2α

2t + 1+ 2l − 2α
if l > 0

Ck0t = 1

k + 2

(
k + 2

2t + 1

)
.

As one can see, in this case all sums are finite.
If k is even, then

〈9JB |rk12|9JK 〉� =
k−lmin∑
q=lmin
(step2)

r
q

1 r
k−q
2

min(q,k−q,lmax)∑
l=lmin
(step2)

Cklt2l (28)

wheret = q−l
2 . The result of integration may be expressed, in this case, in terms ofr1 and

r2 rather thanr< andr>. This is because the RHS of equation (27) is a symmetric function
of r< andr>. After using equations (16) and (28) one obtains

〈B|rk12ŏ|K〉 =
k−lmin∑
q=lmin
(step2)

0(γ1+ q + 1)

α
γ1+q+1
1

0(γ2+ k − q + 1)

α
γ2+k−q+1
2

min(q,k−q,lmax)∑
l=lmin
(step2)

Cklt2l. (29)

In this case a substantial simplification of the final result is due to the explicit separation of
the radial variablesr1 andr2.

If k is odd, then

〈9JB |rk12|9JK 〉� =
lmax+k+1∑
q=lmin
(step2)

rq<r
k−q
>

min(q,lmax)∑
l=max(q−k−1,lmin)

(step2)

Cklt2l (30)

wheret = q−l
2 . The final result is, in this case, analogous to that for the real powers ofr12

(equation (25)):

〈B|rk12ŏ|K〉 =
lmax+k+1∑
q=lmin
(step2)

ϒq(k)

min(q,lmax)∑
l=max(q−k−1,lmin)

(step2)

Cklt2l. (31)

However, the sums in the last equation are finite.
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3.3. Logarithmic terms

In this case the radial functions in the expansion of Sack [6] forl > 0 are given by

fl(r>, r<) ≡ f ln
l (r>, r<) = −

(l − 1)!

( 3
2)l−1

(
r<

r>

)l
2F1

(
l,−1

2
; l + 3

2
; r

2
<

r2
>

)
. (32)

For l = 0 the radial function reads:

f ln
0 (r>, r<) = ln(r>)+

∞∑
t=1

(r</r>)
2t

2t (4t2− 1)
. (33)

The expansion (1) off (r12) becomes

ln(r12) = ln(r>)+
∞∑
t=1

C ln
0,t r

2t
< r
−2t
>

+4π
∞∑
l=1

( l∑
m=−l

Y ∗lm(1)Ylm(2)
)( ∞∑

t=0

C ln
lt r

l+2t
< r−(l+2t)

>

)
(34)

where

C ln
lt = 2l−1 (l + t − 1)!(2t + 1)!!

(4t2− 1)t !(2l + 2t + 1)!!
. (35)

Let us note thatC ln
lt is undefined forl = 0∧ t = 0. By defining

C ln
0,0

def= 0 (36)

one may rewrite equation (34) in a compact form:

ln(r12) = ln(r>)+ 4π
∞∑
l=0

( l∑
m=−l

Y ∗lm(1)Ylm(2)
)( ∞∑

t=0

C ln
lt r

l+2t
< r−(l+2t)

>

)
. (37)

The angular integration gives

〈9JB | ln(r12)ŏ|9JK 〉� = ln(r>)20+
∞∑

q=lmin
(step2)

rq<r
−q
>

min(q,lmax)∑
l=lmin
(step2)

C ln
lt 2l (38)

wheret = q−l
2 . The radial integrals are equal to

〈B| ln(r12)ŏ|K〉 =
∫ ∞

0

∫ ∞
0

ln(r>)r
γ1

1 r
γ2

2 e−α1r1−α2r2 dr1 dr220+
∞∑

q=lmin
(step2)

ϒq(0)
min(q,lmax)∑

l=lmin
(step2)

C ln
lt 2l.

(39)

The second term on the RHS of equation (39) is similar to the one in equation (25) and
may be evaluated using the same method. It is easy to see that the corresponding series
behaves asymptotically, forq → ∞, as 1/q3. The first term (containing ln(r>)) is more
difficult to calculate. It may be expressed as∫ ∞

0

∫ ∞
0

ln(r>)r
γ1

1 r
γ2

2 e−α1r1−α2r2 dr1 dr2 = L1+L2 (40)

where

L1 ≡
∫ ∞

0
dr1

∫ ∞
r1

dr2 ln(r2)r
γ1

1 r
γ2

2 e−α1r1−α2r2
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and

L2 ≡
∫ ∞

0
dr2

∫ ∞
r2

dr1 ln(r1)r
γ1

1 r
γ2

2 e−α1r1−α2r2.

The integrals may be evaluated as follows. A multiple integration by parts gives

L1 =
n∑
k=1

αk−1
1

(γ1+ 1)k

0(γ1+ γ2+ k + 1)

(α1+ α2)γ1+γ2+k+1
[9(γ1+ γ2+ k + 1)− ln(α1+ α2)] + Rln

n

where9 stands for digamma function, andRln
n is the remainder

Rln
n =

αn1

(γ1+ 1)n

∫ ∞
0

dr1 r
γ1+n
1 e−α1r1

∫ ∞
r1

dr2 r
γ2

2 ln(r2)e
−α2r2 (41)

and it is easy to prove that it tends to 0 whenn→∞. As one can check, asymptotically
for n→∞,

|Rln
n | 6 C(n+ δ)δ

(
α1

α1+ α2

)n
whereδ andC are real constants. After some rearrangement one finds

L1 = 0(γ1+ γ2+ 2)

(α1+ α2)γ1+γ2+2

1

(γ1+ 1)

n−1∑
k=0

(
α1

α1+ α2

)k
(γ1+ γ2+ 2)k
(γ1+ 2)k

×
[ k∑
l=0

1

γ1+ γ2+ 1+ l +9(γ1+ γ2+ 1)− ln(α1+ α2)

]
+ Rln

n .

Finally, the exact expression forL1 may be written as

L1 = 0(γ1+ γ2+ 2)

(α1+ α2)γ1+γ2+2

1

(γ1+ 1)

{
2F1

(
1, γ1+ γ2+ 2; γ1+ 2; α1

α1+ α2

)
×[9(γ1+ γ2+ 1)− ln(α1+ α2)]

+
∞∑
k=0

(
α1

α1+ α2

)k
(γ1+ γ2+ 2)k
(γ1+ 2)k

k∑
l=0

1

γ1+ γ2+ 1+ l
}
. (42)

A similar analysis may be performed forL2.
Alternatively, the integrals containing the logarithmic terms may be evaluated

numerically [12, 13]. The numerical method proved to be very stable and accurate (only
two significant figures are lost relative to the double precision accuracy). The numerical
approach has been derived using the following consideration. Let us introduce functions
f̄l(r1, r2) defined in the following way

f̄l(r1, r2)
def= fl(r>(r1, r2), r<(r1, r2)).

As one can show (Sack [6]),

f̄ ln
0 = ln |r1− r2| + (r1+ r2)

2

4r1r2
ln

∣∣∣∣ r1+ r2r1− r2

∣∣∣∣− 1

2
(43)

f̄ ln
1 =

3

16

(
r2

1 − r2
2

r1r2

)2

ln

∣∣∣∣ r1+ r2r1− r2

∣∣∣∣− 3

8

(
r2

1 + r2
2

r1r2

)
(44)

and for l > 1 the recurrent relation:

r2
1 + r2

2

r1r2
f̄ ln
l −

2l + 4

2l + 3
f̄ ln
l+1−

2l − 2

2l − 1
f̄ ln
l−1+ δl,1 = 0. (45)
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As in the case of equation (40) one may conveniently split the integration area into two
parts:

〈RB(r1, r2)|f̄ ln
l (r1, r2)|RK(r1, r2)〉R = P1+ P2 (46)

where

P1 ≡
∫ ∞

0
dr1

∫ ∞
r1

dr2 f̄
ln
l r

γ1

1 r
γ2

2 e−α1r1−α2r2

and

P2 ≡
∫ ∞

0
dr2

∫ ∞
r2

dr1 f̄
ln
l r

γ1

1 r
γ2

2 e−α1r1−α2r2.

By introducing new variabless = r2 and t = r1/r2, equations (43) and (44) may be
expressed as

f̄ ln
0 = ln(s)+ (1+ t)

2

4t
ln(1+ t)− (1− t)

2

4t
ln |1− t | − 1

2
(47)

f̄ ln
1 =

3

16

(
1− t2
t

)2

ln

∣∣∣∣1+ t1− t
∣∣∣∣− 3

8

(
1+ t2
t

)
. (48)

Then, f̄ ln
0 and f̄ ln

1 may be expressed as̄f ln
l = δ0,l ln s + f̃l(t), where l = 0, 1 and,

consequently,P1 may be expressed as a sum ofN1 andN2, where

N1 ≡
∫ ∞

0
dr1

∫ ∞
r1

dr2 δ0,l ln(r2)r
γ1

1 r
γ2

2 e−α1r1−α2r2

may be evaluated analytically using equation (42) and

N2 ≡
∫ ∞

0
dr1

∫ ∞
r1

dr2 f̃l(r1/r2)r
γ1

1 r
γ2

2 e−α1r1−α2r2

may be transformed as follows

N2 =
∫ ∞

0
dr2

∫ r2

0
dr1 f̃l(r1/r2)r

γ1

1 r
γ2

2 e−α1r1−α2r2

=
∫ ∞

0
s ds

∫ 1

0
dt f̃l(t)s

γ1+γ2tγ1e−s(α2+tα1)

= 0(γ1+ γ2+ 2)
∫ 1

0
f̃l(t)

tγ1

(α2+ tα1)γ1+γ2+2
dt. (49)

ThenN2 is expressed by an integral in which the integrand has endpoint singularities of
algebraico-logarithmic type:∫ 1

0
g(t)tα(1− t)β ln(1− t) dt.

If g(t) is regular fort ∈ [0, 1] andα, β > −1 (as it is in the case under consideration),
a numerical evaluation of this integral may be performed using a standard package of
numerical integration procedures. A similar procedure may be performed forP2.

The integrals withl > 1 may be determined using the recurrent relation (45):∫ ∞
0

∫ ∞
0
f ln
l+1(r1, r2)r

γ1

1 r
γ2

2 e−α1r1−α2r2 dr1 dr2

= 2l + 3

2l + 4

[ ∫ ∞
0

∫ ∞
0

(
r1

r2
+ r2
r1

)
f ln
l (r1, r2)r

γ1

1 r
γ2

2 e−α1r1−α2r2 dr1 dr2
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−2l − 2

2l − 1

∫ ∞
0

∫ ∞
0
f ln
l (r1, r2)r

γ1

1 r
γ2

2 e−α1r1−α2r2 dr1 dr2

+δl,1
∫ ∞

0

∫ ∞
0
r
γ1

1 r
γ2

2 e−α1r1−α2r2 dr1 dr2

]
. (50)

Unfortunately, only the integrals for whichγ1, γ2 > l may be evaluated using equation (50).

4. Conclusions

This work gives a new method for evaluation of matrix elements appearing when the
variational approach is applied to solving the Dirac–Coulomb equation using explicitly
correlated trial functions. Within this method all matrix elements may be expressed as
linear combinations of products of several primitive angular and radial integrals. The
method is applicable also in the case when the relativistic two-electron terms (Gaunt or
Breit corrections) are taken into account. The algorithm is numerically stable—its accuracy
is limited only by the accuracy of the representations of the numbers in the computer.
Although the evaluation of the integrals constitutes a small fraction of the total CPU time
needed for solving the Dirac–Coulomb problem, looking for more efficient and simpler
algorithms is still a challenge.

The method has been implemented in a FORTRAN 77 program designed to solve
variationally the Dirac–Coulomb equation for helium-like ions. The results are being
prepared for publication [14].
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